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Ángel Mateo-Ramı́rez1,2*†, Julia Máñez-Crespo2†, Laura Royo2, Fernando Tuya3†,
Inés Castejón-Silvo2†, Gema Hernan2†, Laura Pereda-Briones2†,
Jorge Terrados2† and Fiona Tomas2*†

1 Centro Oceanográfico de Málaga, Instituto Español de Oceanografía (IEO), Consejo Superior de Investigaciones Científicas
(CSIC), Puerto Pesquero s/n Fuengirola, Malaga, Spain, 2 Instituto Mediterráneo de Estudios Avanzados, IMEDEA Consejo
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The introduction and successful expansion of tropical species into temperate systems is
being exacerbated by climate change, and it is particularly important to identify the
impacts that those species may have, especially when habitat-forming species are
involved. Seagrass meadows are key shallow coastal habitats that provide critical
ecosystem services worldwide, and they are threatened by the arrival of non-native
macroalgae. Here, we examined the effects of Halimeda incrassata, a tropical alga that
has recently colonized the Mediterranean Sea, on epifaunal assemblages associated with
Cymodocea nodosa seagrass meadows of Mallorca Island (Western Mediterranean Sea).
This invasive macroalga is an ecological engineer and thus has a high potential of
modifying native habitats. A seagrass meadow colonized by H. incrassata exhibited
important changes on associated epifaunal assemblages, with an increase in abundance
and diversity, particularly driven by higher abundances of Gammaridae, Polychaeta,
Copepoda and Caprellidae. Given the key ecological contribution of epifauna to food
webs, these alterations will likely have important implications for overall food web structure
and ecosystem functioning of native ecosystems.

Keywords: tropicalization, habitat-forming species, food web, invertebrate assemblages, Cymodocea nodosa
INTRODUCTION

Climate change and globalization are exacerbating the introduction and spread of tropical species
into temperate systems (Bianchi and Morri, 2003; Raitsos et al., 2010; Essla et al., 2011; Vergés et al.,
2014; Canning-Clode and Carlton, 2017). Many of the species that can become invasive are
macroalgae, which are especially relevant because they exhibit fast spread and a high capacity to
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establish large populations (Anton et al., 2019 and references
therein). The presence of these species in native macrophyte-
dominated habitats usually has negative effects on the existing
primary producers (macroalgae and seagrasses) affecting the
survivorship, cover, biomass, size, and species richness, often
leading to an homogenization of assemblages (Anton et al., 2019;
Ballesteros et al., 2007; Thomsen et al., 2012; Thomsen et al.,
2014Streftaris and Zenetos, 2006; Thomsen et al., 2009; Williams
and Smith, 2007, but see Garcıá-Gómez et al., 2020; Thomsen,
2020). In contrast, the effects of invasive macroalgae on an
invaded habitat may be negative or even positive on the
abundance and diversity of associated faunal assemblages (e.g.,
fish and invertebrates) because of the additional habitat provided
by these new structuring species (Thomsen, 2010; Willette and
Ambrose, 2012; Thomsen et al., 2014; Navarro-Barranco et al.,
2018; ; Anton et al., 2019; Navarro-Barranco et al., 2019; Vivó-
Pons et al., 2020). For example, while the presence of Gracilaria
vermiculophylla reduces the aboveground biomass of eelgrass (Z.
marina), it favors epifaunal assemblages associated with this
seagrass (Thomsen et al., 2013). Similarly, the invasive seagrass
Halophila stipulacea was able to displace the native seagrass
Syringodium filiforme in 10-12 weeks, but conversely it
supported significantly more epibiotic invertebrates (Willette
and Ambrose, 2012). Invasions by habitat-forming
macrophytes could thus lead to changes in the composition,
species interactions and trophic structure of the associated faunal
assemblages (Vázquez-Luis et al., 2008; Alós et al., 2018; Anton
et al., 2019). Indeed, the effects of invasive macroalgae on native
ecosystems are multiple, complex and not easy to predict (e.g.
Vivó-Pons et al., 2020), so it is necessary to further study the
interactions with native habitats in order to properly manage
them, as pursued by different legislations, such as the European
Marine Strategy Framework Directive.

The Mediterranean Sea is suffering a change in seagrass
extension, while some seagrass species (e.g. Zostera marina and
Posidonia oceanica) have declined, at least locally, other species
are progressing with the help of seawater warming (e.g.
Cymodocea nodosa and the non-native H. stipulacea)
(Boudouresque et al., 2021). This seawater warming is also
accelerating the tropicalization of the Mediterranean Sea
(Vergés et al., 2014; Hoffman, 2014), and several non-native
macroalgae from tropical and subtropical areas have become
invasive in the Mediterranean, including Caulerpa cylindracea,
Lophocladia lallemandii,Womersleyella setacea or Acrothamnion
preissii, among others (Hoffman, 2014; Zenetos and Galandi,
2020). These non-native macroalgae can generate important
negative effects on native macrophytes. For example, L.
lallemandii produces a significant reduction in Posidonia
oceanica shoot size, leaf biomass, and percentage of living
shoots (Ballesteros et al., 2007). Other species such as
Asparagopsis armata, or Codium fragile subsp. fragile form
monospecific coverages dominating many algal assemblages
(Streftaris and Zenetos, 2006; Mancuso et al., 2022). Moreover,
the recent case of Rugulopteryx okamurae has marked an
unprecedented milestone on the coastal ecosystems of north
Africa and south Spain. This species is transforming native
Frontiers in Marine Science | www.frontiersin.org 2
habitats of macroalgae beds and coralligenous habitats,
producing a homogenization and inflicting heavy losses on
ecosystem services in a record time (Garcıá-Gómez et al., 2018;
Garcıá-Gómez et al., 2020; Navarro-Barranco et al., 2021). The
biotic impoverishment on coralligenous epifaunal produced by
the spreading of R. okamurae is especially notable, whith a
reduction in number of species and a taxonomical and
functional homogenization (Navarro-Barranco et al., 2021).

The effects on epifaunal assemblages are usually modulated
by the structural complexity and chemical traits of novel
macrophytes (Schmidt and Scheibling, 2006; Thomsen et al.,
2013; Navarro-Barranco et al., 2019). When the novel species
have a higher complexity compared to the native macrophytes,
there is frequently an increase in epifaunal species richness
(Schmidt and Scheibling, 2006; Belattmania et al., 2018) and/or
in their abundances (Willette and Ambrose, 2012; Thomsen
et al., 2013). Conversely, if the new macrophyte is less
structurally complex than the native species, it can lead to a
decrease in the abundance and/or richness of epifaunal
assemblages (Guerra-Garcıá et al., 2012; Navarro-Barranco
et al. , 2018; Mancuso et al. , 2022). However, novel
macrophytes may still enhance epifaunal assemblages even
when co-inhabiting or replacing a native species of equal
structural complexity (Navarro-Barranco et al., 2019). Thus,
the arrival of non-native macrophyte species to the
Mediterranean Sea will likely have a negative impact on the
native macrophytes, but the consequences for epifaunal
assemblage remain inconclusive.

Recently, a new siphonous macroalga,Halimeda incrassata (J.
Ellis) J. V. Lamouroux, has appeared in the Mediterranean Sea
(Alós et al., 2016). This is the first recorded invasion of a species
of the genus Halimeda for the Mediterranean Sea. The native
distribution of this tropical seaweed encompasses the Western
Atlantic and Indo-Pacific Oceans (Guiry and Guiry, 2016). In
2005, its presence was reported on the island of Madeira (NE
Atlantic) for the first time (Wirtz and Kaufmann, 2005). At the
end of 2008, H. incrassata was detected in La Palma (Canary
Islands) (Sangil et al., 2018) and four years later, in 2011, H.
incrassata was found colonizing sandy bottoms in the south-
western coast of Mallorca Island (NW Mediterranean) (Alós
et al., 2016), rapidly spreading into different areas of Mallorca
since then (Tomas et al., unpublished).

Halimeda incrassata has a high invasion potential, since it can
colonize soft bottoms (e.g., sandy habitats and seagrass beds) by
attaching to the substrate through its bulbous rhizoidal holdfasts
(van Tussenbroek and Barba Santos, 2011). In addition, not only
does H. incrassata reproduce sexually, but it also exhibits asexual
reproduction by rhizoidal extension and fragmentation, thereby
displaying a high expansion potential (van Tussenbroek and
Barba Santos, 2011). Furthermore, its calcified thallus and the
presence of chemical defenses provide Halimeda species a
considerable resistance to herbivory pressure (Hay et al., 1987;
Paul and Van Alstyne, 1988), suggesting that native herbivores in
the Mediterranean may be unable to feed on it. However, some
native herbivores (e.g. the sea urchin Paracentrotus lividus and
the fish Sarpa salpa) are able to consume invasive macroalgae
June 2022 | Volume 9 | Article 886009
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(mainly C. racemosa), but their capacity to control the invasion is
somehow limited (Cebrian et al., 2011; Tomas et al., 2011;
Santamarıá et al., 2021). Thus, the combination of defense and
reproductive traits provide H. incrassata with a strong potential
of invasion and ecosystem modification (Alós et al., 2016; Sangil
et al., 2018). Importantly, because H. incrassata is a habitat-
forming species with an important ecological role on tropical
sandy-bottom habitats (e.g. it provides microhabitat for
numerous species of epifaunal invertebrates; Verbruggen et al.,
2006), it may have major ecological effects on native ecosystems.

Currently, information about the effects of H. incrassata on
invaded habitats is scant. The few existing studies have mainly
focused on impacts on fish assemblages on invaded sandy
habitats, and have led to ambiguous results. While some fish
species are not affected by the presence of H. incrassata (e.g., the
Starry weever Trachinus radiatus and the Atlantic lizardfish
Synodus saurus), other fish are deterred (e.g., the flatfish
Bothus podas), while other species seem to be attracted (i.e. the
Razorfish Xyrichtys novacula) (Alós et al., 2018; Vivó-Pons et al.,
2020). Significant effects on fish have been hypothesized to be
related to a direct loss of suitable habitat (e.g., burrowing space
for flatfish), but also to indirect positive effects (e.g., potential
increase of invertebrate prey) resulting from the presence of the
new three-dimensional structure provided by this habitat-
forming alga (Alós et al., 2018; Vivó-Pons et al., 2020). In
addition to invading sandy bottoms, H. incrassata has recently
been detected on meadows of the seagrass C. nodosa (Tomas
et al., 2020), without impacts on this native seagrass having thus
far been observed. Since seagrasses already provide habitat for
numerous associated invertebrates and fish (Hemminga and
Duarte, 2000; Boström et al., 2006; Thomsen, 2010; Nordlund
et al., 2016; Orth et al., 2020), including C. nodosa (Espino et al.,
2011; Espino et al., 2015), it is unclear how an additional
macrophyte may alter such habitat-provisioning function.

Given the current global scenario of expansion of tropical
macrophyte species (Anton et al., 2019; Beca-Carretero et al., 2020;
Winter et al., 2020), the global and local regression of seagrass
meadows in the Mediterranean Sea (Waycott et al., 2009;
Boudouresque et al., 2021) and the accelerated tropicalisation of
the Mediterranean Sea (Bianchi and Morri, 2003; Vergés et al.,
2014), understanding the community effects that tropical habitat-
forming species have on native seagrass habitats is key for
adopting meaningful conservation and management practices.
Studying associated epifaunal assemblages is particularly relevant
because many of these organisms play a critical role in food webs
dynamics and structure and can also be key grazers determining
competitive outcomes amongst primary producers in seagrass
beds (e.g., Taylor, 1998; Heck et al., 2000; Heck and Valentine,
2006; Duffy et al., 2015).

The aim of the present work was to study the effects that the
invasive tropical alga H. incrassata may have on epifaunal
assemblages (composition, diversity and abundances) associated
with the seagrass C. nodosa. By using an ‘ACI’ (After-Control/
Impact) design, we tested the hypothesis that H. incrassata has a
positive effect on epifaunal assemblages (in terms of diversity
and abundances).
Frontiers in Marine Science | www.frontiersin.org 3
MATERIAL AND METHODS

Study Area and Sampling Design
To compare epifaunal assemblages on Cymodocea nodosa
meadows invaded and not invaded by H. incrassata, we
selected five (one invaded, four uninvaded) shallow-water C.
nodosa meadows (sites) along Mallorca (Balearic Islands;
Western Mediterranean). Three of the uninvaded meadows
(Formentor, Es Barcares and Aucanada) were located on the
Northeast coast of Mallorca, between ca. 1.5 to 3 m depth. The
two other meadows (uninvaded Santa Maria “henceforth, St
Maria”, at ca. 8 m depth, and the invaded Sa Platgeta, at ca.
2 m deep) were located at the National Park of Cabrera (a small
island south of Mallorca; Figure 1). Mallorca and Cabrera share
the same island shelf and geo-morphological context (Acosta
et al., 2003). Halimeda incrassata has recently (September of
2016) colonized the latter meadow (i.e. Sa Platgeta), and it has
been expanding since then (Tomas et al., 2020), whereas St.
Maria remains uninvaded. All meadows are located in small
beaches in protected bays, undergoing similar environmental
conditions but with temporal variability (Supplementary
Figure S1).

Sample Collection and Processing
Temperature was monitored in situ at 4 sites (Es Barcares,
Aucanada, St Maria and Sa Platgeta) using HOBO loggers that
saved measurements every 15 minutes, in order to assess
for potential differences in environmental conditions
between meadows.

Epifaunal samples of invaded and uninvaded C. nodosa
meadows were collected three times; in April 2017, June 2017
and February 2018 by SCUBA diving. At each site and time, five
replicates were taken by haphazardly placing a 0.0314 m-2 cylinder
attached to a fine-meshed (125 µm) bag onto the substrate. All
aboveground material and associated epifauna were covered and
C. nodosa shoots and H. incrassata thalli were cut using scissors
and harvested within the bag (as in Tuya et al., 2019). In addition,
densities of C. nodosa shoots and cover ofH. incrassata thalli were
recorded using a 20 x 20 cm quadrat subdivided into 25 sections (n
= 10 replicates for density and n= 20 replicates for cover; cover of
H. incrassata was only taken in Sa Platgeta). The number of C.
nodosa shoots in each quadrant was counted to estimate density.
To estimate the cover ofH. incrassata, we recorded the number of
sections occupied by H. incrassata thalli inside each quadrant
(Boudouresque, 1971). In the laboratory, shoots and thalli were
carefully washed in freshwater to remove epifauna, which was
sieved through a 500 µm mesh size and conserved in 70° ethanol.
Afterwards, epiphytes were carefully scraped off the seagrass leaves
using a microscope slide and placed in a previously weighed filter.
Epiphytes, seagrass leaves and H. incrassata thalli were dried for
ca. 48 hours (until constant weight) at 60°C, and subsequently
weighed and standardized to g DW 0.0314 m-2. The epiphytes of
H. incrassata were weighed together with their thalli. Additionally,
subsequent sampling using 0.0314 m-2 cylinder (5 replicates per
time) was carried out (October 2017, April 2018 and July 2018) to
assess epiphyte and H. incrassata biomasses separately. Small
June 2022 | Volume 9 | Article 886009
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mobile invertebrates (epifauna) were separated, counted and
identified at coarse levels of taxonomic resolution under a stereo
microscope. Epifaunal individuals included a total of 22 different
taxa: Acari, Anomura, Bivalvia, Brachyura, Caprellidae, Caridea,
Copepoda, Cumacea, Echinoidea, Gammaridae, Gastropoda,
Isopoda, Mysidacea, Nematoda, Ophiuroidea, Heterobranchia,
Ostracoda, Turbellaria, Polychaeta, Pycnogonidae, Sipunculidae
and Tanaidacea.

Data and Statistical Analyses
Site and time differences in seawater temperature were analyzed
using ANOVA and Tukey’s Post Hoc comparisons. Prior to
performing ANOVAs and PERMANOVAs (see below), Levene’s
tests were used to test for heterogeneity of variances. When
homogeneity of the variance was not achieved, square root
transformed data was analyzed, to reach linearity assumptions.

Differences in C. nodosa shoot density andH. incrassata cover
between meadows and times were analyzed based on Euclidean
distances and following a two-way PERMANOVA (2 factors,
Meadows: 5 levels, fixed and Time: 3 levels, random), and one-
way PERMANOVA (Time: 3 levels, random), respectively
(Table 1, Figure 2). One-way PERMANOVA (Time: 3 levels,
random) was also used to analyze the biomass evolution of C.
nodosa,H. incrassata and their epiphytes in the invaded meadow
of Sa Platgeta (Table 1, Figure 3).

Epifaunal assemblages were examined by considering several
ecological variables: abundance of individuals (ind.·0.0314 m-2),
taxon richness (number of taxonomic groups; taxa·0.0314 m-2),
the Shannon-Wiener diversity index (H´log2), the Pielou
evenness index, and assemblage structure (composition and
abundances of all taxa).
Frontiers in Marine Science | www.frontiersin.org 4
Data was analyzed according to an “After-Control-Impact”
(ACI) design (Glasby, 1997; Terlizzi et al., 2005), using two-way
asymmetrical uni- (for total abundance, taxa richness, Shannon-
Wiener and Pielou indexes) and multivariate (for assemblage
structure) PERMANOVAs (Anderson, 2001), which tested for
differences in the ecological variables between the invaded
meadow (Impact, hereafter indicated as I) and uninvaded
meadows (Controls, hereafter indicated as Cs) through the three
sampling times, with seagrass and epiphyte biomass used as
covariables (Table 2). The model consisted of 2 factors: meadows
(with 1 impacted and 4 control meadows; I vs. Cs term was
considered fixed, while the term between Cs was random) and
time (3 levels, random). Subsequently, the data were re-analysed
while omitting the I location, i.e. only Cs. The asymmetrical
components were then calculated by subtractions and additions
of components (Underwood, 1993; Terlizzi et al., 2005; Tuya et al.,
2006). Differences between taxon richness and abundance between
I and Cs meadows (mean values of the 4 meadows) at each
sampling time were tested using Euclidean distances and
following a one-way PERMANOVA (Factor I vs Cs).

Pairwise tests based on Euclidean distances were carried out
on the ecological variables with significant differences between
times and I vs Cs term. Visualization of differences in the
epifaunal multivariate structure between I and Cs meadows
(mean values of the 5 samples for each time and meadow) was
performed through a non-metric multidimensional scaling
(nMDS) ordination, from square root transformed abundance
data and Bray-Curtis similarities. The SIMPER procedure was
used to identify, for each time, those taxa that most contributed
to differences between I and Cs meadows, through measures of
the Bray-Curtis dissimilarity between the average of the Cs
A B

C

FIGURE 1 | (A) Location of the Cymodocea nodosa meadows: (For) Formentor; (Bar) Es Barcares; (Auc) Aucanada; (StM) Santa Marıá; (PtG) Sa Platgeta. (B) Aspect of
the invasion in summer (picture by F. Tomas). (C) Detail of the structural complexity of Halimeda incrassata thalli (picture by Enric Ballesteros).
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versus I. Taxa were selected as “important”, if they exceeded a
threshold value of their percent dissimilarity of ≥3%. From these
taxa identified as important, we only selected as significant those
with a ratio dissimilarity/standard deviation (Diss/SD) > 1
(Terlizzi et al., 2005). Higher values of ratio Diss/SD than 1
indicate that the contribution of this taxon to the average
dissimilarity is relatively consistent across the majority of the
samples in the comparison between I and Cs (Clarke, 1993).
Using the same ACI design previously explained, we tested the
changes in abundance of the five most important taxa between I
and Cs meadows, as well as between sampled times. We
implemented univariate and multivariate routines in PRIMER
6.0 + PERMANOVA (Clarke and Warwick, 2001).
RESULTS

Habitat Variables
Seagrass shoot density exhibited significant spatial and temporal
differences (but no interaction between time and meadow;
Table 1, Figure 2A), with maximum densities in Aucanada
(mean ± SE, 1117.5 ± 77.2 shoot·m-2) and Formentor (965 ±
62.3 shoot·m-2), and minimum densities in St Maria (573.3 ± 39.4
shoot·m-2). Seagrass shoot density exhibited the highest values in
April 2017 and the lowest values in February 2018 (Table 1,
Figure 2A). Halimeda incrassata cover in Sa Platgeta also
exhibited temporal differences, with an increase from April 2017
(10%) to February 2018 (23%) (Table 1, Figure 2B). The biomass
of C. nodosa and its epiphytes showed a decrease from April 2017
(0.68 ± 0.05 g and 0.46 ± 0 g, respectively), to February 2018 (0.1 ±
0.01 g and 0.04 ± 0.01 g), whereasH. incrassata biomass (including
its epiphytes) presented an increase (from 0 g to 0.15 ± 0.12 g)
although this was not significant (Table 1, Figure 3A). Regarding
the additional subsequent sampling done to assess epiphyte andH.
incrassata biomass separately, a decrease onH. incrassata biomass
was detected from October 2017 (1.74 ± 0.78 g) to July 2018 (0.07
± 0.04 g), which coincides with its dynamics in this zone (Tomas
et al., 2020). The epiphytes of H. incrassata did not present
significant differences during this period (Table 1, Figure 3B),
with values ranging between 0.05 ± 0.03 g and 0.29 ± 0.17 g.
Conversely, the biomass of C. nodosa (from 0.13 ± 0.02 g to 0.39 ±
012 g) and its epiphytes increased between October 2017 and July
2018 (from 0 to 0.04 ± 0.01 g) (Table 1, Figure 3B).
Epifaunal Assemblages
We identified 22 taxonomic groups from a total of 1,326
epifaunal organisms. The most abundant taxa were Gastropoda
(354 ind.), Gammaridae (243 ind.), Polychaeta (234 ind.),
Copepoda (132 ind.) and Caprellidae (117 ind.).

Taxon richness and epifaunal abundance exhibited significant
differences between I and Cs meadows, reaching the highest
values at I with 5.4 ± 0.75 taxa·0.0314 m-2 and 35.9 ± 7.9
ind.·0.0314 m-2, respectively (Table 2, Figure 4). The absence
of H. incrassata biomass in April 2017 and its presence in the
subsequent months appear to be driving the T x I-vs-Cs
interactions. Indeed, the pair-wise comparisons between I and
T
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Cs meadows were higher during the months when H. incrassata
biomass was present (June 2017 and February 2018). The I
meadow was the one that presented the highest abundance
(66 ± 8.9 ind.·0.0314 m-2) and richness (7.8 ± 0.5 taxa·0.0314
m-2) values during February 2018 (Table 2, Figure 4). Shannon-
Wiener diversity and evenness indexes did not exhibit significant
differences, either for the factor I vs Cs or T x I-vs-Cs
interactions (Table 2).

Multivariate analysis provided evidence for statistically
significant differences in the epifaunal assemblage structures
associated with I meadow compared with the Cs meadows.
However, these changes in epifaunal structure had a temporal
dependence (T x I-vs-Cs) (Table 2, Figure 5). Similarly to taxon
richness and epifaunal abundance, these differences were higher
Frontiers in Marine Science | www.frontiersin.org 6
whenH. incrassata biomass was present, although those were only
statistically significant in June 2017 (F1,19 = 4.45; p < 0.05)
(Table 2, Figure 5).The SIMPER routine identified 10 taxa as
responsible for the differences between assemblages associated
with I and Cs meadows during June 2017 (Table 3). Of these taxa,
Caprellidae, Polychaeta, Gammaridae, Gastropoda and Copepoda
were the most important contributors to discriminate between I
and Cs, and they exhibited higher abundances at the I meadow
than at Cs (Table 3, Figure 6). Other contributing groups were
Ostracoda and Mysidacea, which were present almost exclusively
at the Cs (Table 3). Regarding temporal evolution of abundance,
Gammaridae, Polychaeta, and Caprellidae were the ones among
the most abundant taxa that exhibited T x I-vs-Cs interactions.
These taxa presented their highest abundances in June 2017 and
A

B

FIGURE 2 | (A) Temporal variation in seagrass shoot density of the five Cymodocea nodosa meadows. (B) Temporal variation in Halimeda incrassata cover. Mean ±
SE. I = Invaded.
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February 2018 (again in relation to the presence of H. incrassata
biomass) at I meadow, with abundances of 21.2 ± 3.2, 16.8 ± 2.2
and 12.4 ± 5.4 ind.·0.0314 m-2, respectively (Table 2, Figure 6).
DISCUSSION

Our study provides further support of a novel macrophyte
enhancing the abundance and diversity of epifaunal assemblages.
Indeed, most taxa increased their abundances across sampling
Frontiers in Marine Science | www.frontiersin.org 7
times in the seagrass bed colonized with H. incrassata, with
certain groups, such as Gammaridae, Polychaeta, Copepoda and
Caprellidae, undergoing particularly relevant changes as the
invasion progressed. This trend matches the composition of
the epifauna associated with H. incrassata beds in its native
distribution area. Naim (1988) found that the mobile fauna
inhabiting the beds of H. incrassata from Tiathura (French
Polynesia) was mainly composed by a highly diverse
assemblage of microcrustaceans (mainly isopods, tanaids and
amphipods) and a diversified assemblage of Syllidae species
A

B

FIGURE 3 | Temporal changes in biomass of Cymodocea nodosa, Halimeda incrassata and their epiphytes (mean ± SE) in Sa Platgeta. (A) Data considering H.
incrassata and its epiphytes together (from epifauna samples). (B) Data with values of H. incrassata and its epiphytes (additional sampling).
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(Polychaeta). We also found that Syllidae was the most abundant
family of polychaetes in the invaded C. nodosa meadow. The
response of Gastropoda to the presence of H. incrassata is also
interesting, given that their abundance trajectories were opposite
in the invaded meadow (where they increased), vs. the
monospecific (Cs) seagrass meadows, where they decreased,
especially in February 2018, when C. nodosa presented its
lowest shoot density.

The increase in epifaunal abundances observed in the I
seagrass meadow seems to be related with a higher
availability of additional habitat and microhabitat provided
by this novel species and its epiphytes. Higher availability of
habitat, not only implies more inhabitable space, but also likely
a decrease in predation pressure and enhanced food availability
(Orth et al., 1984; Heck and Crowder, 1991; Moore and Hovel
2010; Reynolds et al., 2018; Jiménez-Ramos et al., 2019).
Indeed, some epifaunal groups (e.g. amphipods), which can
be highly susceptible to predation (Reynolds et al., 2018),
exhibited higher abundances in the seagrass meadow that
harbored H. incrassata. Furthermore, the positive effects of
the presence of this tropical alga may be especially relevant in
winter, when C. nodosa exhibit its lowest shoot density (this
work, Máñez-Crespo et al., 2020), as well as shoot size (Máñez-
Crespo et al., 2020), and thus when habitat availability provided
by the seagrass is reduced.

Most of the taxa that increased their abundance in the
invaded C. nodosa meadow are species within detritivorous or
Frontiers in Marine Science | www.frontiersin.org 8
omnivorous trophic guilds and, in addition, many species of
some of these groups (Polychaeta, Gammaridae and
Caprellidae) are often opportunistic, with a high adaptive
potential and reproductive capacity (López and Viéitez, 1999;
Vázquez-Luis et al., 2009; Woods, 2009; Vázquez-Luis et al.,
2008; Casu et al., 2009; Brun et al., 2017; Ribeiro et al., 2018).
For example, Casu et al. (2009) showed that in an assemblage of
photophilic algae invaded by the macroalga C. cylindracea, the
polychaeta Silly prolifera and the gammarid Corophium
sextonae can amplify their food sources and incorporate
detritus provided by this novel species. This flexibility could
benefit the aforementioned taxa over more specialized taxa in
this new environment by being able to take advantage of the
extra resources provided by H. incrassata, the associated
epiphytes, and their detritus. We also found a high
abundance of herbivores, such as snails, isopods, and
opisthobranchs, suggesting that these taxa may feed on H.
incrassata or its epiphytes, as it has been suggested for other
invasive algae (e.g. G. vermiculophylla; Thomsen et al., 2013).
Therefore, in our study area, it seems that the presence of the
tropical alga H. incrassata favors both opportunistic taxa with
high capacity of adaptation and with detritivorous or
omnivorous trophic guilds as well as herbivorous species.

Crustaceans and polychaetes are important food sources for
higher trophic groups, such as fish (Castriota et al., 2005; Valls,
2017), and these groups act as key trophic links contributing to
the transfer of energy to higher trophic levels (Taylor, 1998).
TABLE 2 | Results of two-way PERMANOVAs examining spatial and temporal patterns of epifaunal abundance, diversity and assemblage structure.

Taxon richness Abundance (sqrt) Shanon-Wienner (sqrt) Pielou (sqrt) Communitty structure (sqrt)

Source of variation df MS F MS F MS F MS F df MS F

Cymodocea nodosa 1 55.2 2.654 18.766 0.997 1.098 4.017 0.088 1.018 1 31280 5.919*
Epiphytes 1 31.17 0.406 2.914 0.47 0.072 0.348 0.005 0.057 1 2500.5 0.904
Meadows = Me 4 18.609 24.595 0.371 0.055 4 7506
I-vs-Cs 1 19.735 8.258** 39.153 35.266*** 0.214 1.176 0.005 0 1 5319 3.166
Among Cs 3 18.234 1.031 19.742 2.306 0.424 0.472 0.072 0.264 3 8234.9 1.409

Times = T 2 22.882 20.831 0.284 0.085 2 5630
T x Me 8 12.048 12.626 0.711 0.262 8 4879.875
T x I-vs-Cs 2 9.473 3.964* 31.014 27.936*** 0.393 2.159 0.099 1.02 2 5922 3.525*
T x Cs 6 12.907 7.702** 6.497 9.111*** 0.817 4.674 0.317 3.251* 6 4532.5 2.669***

Residual 58 2.39 1.11 0.182 0.097 57 1680.1
Total 74 73

Gastropoda Gammaridae (sqrt) Polychaeta (sqrt) Copepoda (sqrt) Caprelidae(sqrt)
Source of variation df MS F MS F MS F MS F MS F
Cymodocea nodosa 1 21.199 2.866 63.652 4.121 34.809 9.468* 14.782 5.238 5.407 2.85
Epiphytes 1 1.1763 0.38 0.792 0.163 4.047 2.439 1.39 1.074 7.264 8.174**
Meadows = Me 4 11.068 3.901 9.781 4.609 4.383
I-vs-Cs 1 7.197 7.716* 7.427 29.490*** 17.482 22.386*** 9.981 15.872*** 14.932 33.182***
Among Cs 3 12.36 3.234 2.725 0.987 7.214 3.444 2.819 1.234 0.867 0.904

Times = T 2 6.71 17.416 4.052 3.106 2.084
T x Me 8 2.137 2.379 2.973 1.878 2.531
T x I-vs-Cs 2 0.662 0.71 4.413 17.519*** 6.798 8.704** 1.827 2.905 7.644 16.987***
T x Cs 6 2.628 2.599* 1.701 8.330*** 1.699 3.999** 1.895 3.824** 0.826 3.220**

Residual 56 0.933 0.252 0.781 0.629 0.45
Total 72
Ju
ne 20
22 | Volume 9 |
*p < 0.05, **p <0.01, ***p < 0.001.
Df, degrees of freedom; MS, mean square; sqrt, square root transformation.
Bold values indicate significant values.
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Consequently, changes on epifaunal assemblage structure
would likely affect the abundance and distribution of higher
trophic levels, thus ultimately altering food webs (e.g. Lazzari
and Stone, 2006; Dijkstra et al., 2017). In fact, in the Marine
Protected Area (MPA) of Palma Bay (South Mallorca Island),
the occurrence and fast spread of H. incrassata on shallow
sandy bottoms has produced a redistribution of the populations
of the Razorfish Xyrichtys novacula (Alós et al., 2018; Vivó-
Frontiers in Marine Science | www.frontiersin.org 9
Pons et al., 2020). This species, which is very important in local
fisheries (Morales-Nin et al., 2005), is shifting its populations
towards the newly created H. incrassata beds present in this
MPA (Alós et al., 2018; Vivó-Pons et al., 2020), which could be
explained by a higher amount of food available, since the diet of
this fish mainly consists of small invertebrates, such as
polychaetes, amphipods, copepods and molluscs (Castriota
et al., 2005).
A

B

FIGURE 4 | (A) Taxon richness and (B) epifaunal abundances (mean ± SE) through the three sampled times for control meadows (Cs) and the invaded meadow (I).
*p < 0.05, ***p < 0.001.
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CONCLUSIONS

Our study reinforces the notion that the arrival of novel species does
not always cause net negative species losses on native ecosystems.
Indeed, the colonization of the tropical alga H. incrassata has
produced positive effects, in terms of increases in the abundance
and diversity of epifaunal assemblages. The most abundant taxa
were those with opportunistic species and with trophic guilds able to
exploit the new resources offered by the new habitat. It could be
expected that, as the habitat stabilizes (the invasion is still very
Frontiers in Marine Science | www.frontiersin.org 10
recent), the epifaunal associations will tend to stabilize as well, and
create a new assemblage with a more stable food web, in the same
way as observed in other invertebrates assemblages (e.g. polychaetes
and amphipods) altered by an “impact” (Del-Pilar-Ruso et al., 2015;
de-la-Ossa-Carretero et al., 2016). However, our study was limited
to one invaded meadow, so more meadows should be studied in the
future for a longer time to unambiguously infer causality resulting
from the invasion. So far, we have not observed apparent negative
effects on C. nodosa density, but perhaps a longer temporal data
series may be necessary. Indeed, H. incrassata beds are important
A

B

FIGURE 5 | nm-MDS based on quantitative (square root transformed abundance data) similarities (Bray Curtis index) showing similarities in epifaunal communities
from the studied Cymodocea nodosa meadows, controls and invaded. (A) Samples of each location (n = 15, mean values of the three times of sampling).
(B) Samples of each location at each time of sampling (n = 5). I = Invaded.
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producers of organic carbon and calcium carbonate (CaCO3) in
tropical areas (Hillis-Colinvaux, 1980), and thus, their capacity to
modify sediments could compromise the development of C. nodosa
meadows in the future.
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Supplementary Figure 1 | Temperature (mean ± SE) through times in the
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Guerra-Garcıá, J. M., Ros, M., Izquierdo, D., and Soler, M. (2012). The Invasive
Asparagopsis Armata Versus the Native Corallina Elongata: Differences in
Associated Peracarid Assemblages. J. Exp. Mar. Biol. Eco.l 416–417, 121–128.
doi: 10.1016/j.jembe.2012.02.018

Guiry, M. D., and Guiry, G. M. (2016) AlgaeBase (Galway: World-Wide Electronic
Publication, National University of Ireland) (Accessed 19 March 2019).

Hay, M. E., Duffy, J. E., Pfister, C. A., and Fenical, W. (1987). Chemical Defense
Against Different Marine Herbivores: Are Amphipods Insect Equivalents?
Ecology 68, 1567–1580. doi: 10.2307/1939849

Heck, K., and Crowder, L. B. (1991). Habitat Structure and Predator—Prey
Interactions in Vegetated Aquatic Systems. In: S. S. Bell, E. D. McCoy and
H. R. Mushinsky (eds) Habitat Structure. Population and Community Biology
Series, vol 8. Dordrecht, Springer. https://doi.org/10.1007/978-94-011-
3076-9_14

Heck, K., Pennock, J. R., Valentine, J., Coen, L. D., and Sklenar, S. A. (2000). Effects
of Nutrient Enrichment and Small Predator Density on Seagrass Ecosystems:
An Experimental Assessment. Limnol. Oceanogr. 45 (5), 1041–1057.
doi: 10.4319/lo.2000.45.5.1041

Heck, K., and Valentine, J. F. (2006). Plant–herbivore Interactions in Seagrass
Meadows. J. Exp. Mar. Biol. Ecol. 330 (1), 420–436. doi: 10.1016/
j.jembe.2005.12.044

Hemminga, M., and Duarte, C. (2000). Seagrass Ecology. (Cambridge: Cambridge
University Press). doi: 10.1017/CBO9780511525551

Hillis-Colinvaux, L. (1980). Ecology and Taxonomy of Halimeda: Primary
Producer of Coral Reefs. Adv. Mar. Biol. 17, 1–327. doi: 10.1016/S0065-2881
(08)60303-X

Hoffman, R. (2014). “Alien Benthic Algae and Seagrasses in the Mediterranean Sea
and Their Connection to Global Warming,” in The Mediterranean Sea: Its
History and Present Challenges. Eds. S. Goffredo and Z. Dubinsky (Dordrecht:
Springer).
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