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ABSTRACT
Microplastics and antimicrobial-resistant bacteria are a matter of concern, especially in aquatic
environments. In this study, we compared the presence of microplastics and antibiotic-
resistant bacteria in the intestine of the sea cucumber Holothuria sanctori at sites under
different levels of pollution in Gran Canaria Island (Canary Islands, Spain, eastern Atlantic).
We sampled animals at two offshore sites (controls) under low organic pollution and at a
site under high organic pollution, i.e. directly affected by sewage water. From a total of 79
collected animals, 133 Gram-negative bacteria were isolated; 20 were Enterobacteriaceae,
and the rest Non-Fermenting Bacilli (NFB). We detected Enterobacteriaceae resistant to
critically important antimicrobials, such as ceftazidime or fluoroquinolones, particularly at
the polluted site. In addition, we observed a significantly higher number (□2 orders of
magnitude) of microplastics in the gut of sea cucumbers sampled at the polluted site,
relative to the two controls. Our preliminary results point towards integrating
microbiological and ecological approaches to analyse the mutual influence of both
pollutants in aquatic ecosystems.
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Introduction

Antimicrobial resistance is considered a ‘One Health’
issue (Robinson et al. 2016). Human, animal and
environmental health are interconnected and the pres-
ence of bacteria resistant to antibiotics mirrors antimi-
crobial resistance in human and veterinary medicine
(WHO 2019). Antibiotics have been massively used,
as therapeutic or preventive drugs for human and
animal health, leading to a selective pressure that pro-
motes the selection of antimicrobial resistant (AMR)
bacteria in their intestines (Robinson et al. 2016).
These AMR bacteria mostly reach aquatic environ-
ments via wastewater, for example via sewage
effluents in nearshore areas. Aquatic microorganisms
are then exposed to antimicrobials or their metab-
olites, and, under this selective pressure, AMR
become more prevalent (Berkner et al. 2014).

Across coastal areas of the world, pollution of
aquatic environments by AMR and microplastics is of
growing concern (Guo et al. 2020). The widespread

discharge of sewage effluents into seawater is con-
sidered one of the main routes of antibiotic-resistant
bacteria from humans and livestock to aquatic
environments (Al-Bahry et al. 2009), while sewage
favours bacteria biofilm formation on microplastic
fragments (Martínez-Campos et al. 2021).

The impact of microplastics on aquatic environ-
ments results from their incorporation, via small
animals, into food chains and the adsorption of pollu-
tants on microplastic surfaces (Anbumani and Kakkar
2018). Microplastics can influence antimicrobial resist-
ance, spreading microorganisms that are resistant to
antibiotics (Bank and Hansson 2020; Guo et al. 2020;
Moore et al. 2020). In addition to this, several antimicro-
bials can be adsorbed on the surface of microplastics (Li
et al. 2018; Alprol et al. 2021; Santana-Viera et al. 2021),
contributing to the selection of resistant bacteria.

In this sense, Arias-Andres et al. (2018) demon-
strated that there is an increased frequency of
plasmid transfer, including antibiotic resistance
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genes, in bacteria associated with microplastics, com-
pared with free-living bacteria.

Holothurians, popularly known as ‘sea cucumbers’,
are found in almost every marine environment of the
world, and play an important role in nutrient recycling,
by consuming sediments and retaining organic matter
(Uthicke 2001; Zhang et al. 2015). Holothurians are
deposit-feeders, and, therefore, it is plausible that
sewage discharges into the ocean may induce anti-
biotic resistance in their intestinal bacteria (Jiang et al.
2014). Sea cucumbers are high-value animals for the
aquaculture industry, and bacterial diseases are fre-
quent, promoting the use of antibiotics as therapeutic
or preventive solutions (Dang et al. 2006). The presence
of AMR bacteria in these animals could, therefore, com-
plicate the treatment of diseases. For example, many
Vibrio parahaemolyticus isolates from cultured sea
cucumbers (Apostichopus japonicas) showed large
resistance to ampicillin and cefazolin, while less resist-
ance was observed to streptomycin, cefuroxime
sodium, tetracycline, sulphamethoxazole/trimetho-
prim and quinolones (Jiang et al. 2014). At the same
time, such a presence could also be a risk for human
health, by transferring this resistance either to consu-
mers (De-la-Torre 2020), or other animals.

Sea cucumbers are non-selective feeders (Uthicke
2001; Navarro et al. 2013, 2014), ingesting large quan-
tities of sediment to extract nutrients, includingmicroor-
ganisms and organic debris. It has been demonstrated
that holothurians not only ingest microplastics present
in sediments, but they selectively ingest microplastics
over sediment grains (Graham and Thompson 2009).

Ingestion of microplastics by benthic deposit-
feeders is, in turn, a way to introduce microplastics in
the food chain (van Cauwenberghe and Janssen
2014; Reguera et al. 2019; Teng et al. 2019).

The aim of this study was to compare the presence
of microplastics and antibiotic-resistant bacteria in the
intestine of the sea cucumber Holothuria sanctori at
sites under different levels of pollution in Gran
Canaria Island (Canarian Archipelago, eastern Atlantic,
Spain).

Specifically, we compared the presence of micro-
plastics, and antimicrobial resistant bacteria, between
two offshore sites (controls) under low organic pol-
lution and a site under large organic pollution.

Materials and methods

Study area

The study was carried out, between November 2019
and July 2020, in Gran Canaria, Canary Islands, Spain

(28°N, eastern Atlantic Ocean) (Figure 1). Three sites,
between 7 and 14 m depth, were selected: Baja de
Pasito Blanco (P) (27°44′422′′N, 15°37′858′′W), Baja de
Arguineguín (A) (27°44′48.36′′N, 15°41′2.32′′W) and
Taliarte (T) (27°59′27.95′′N, 15°22′05.04′′W). The first
two sites were outside direct human influences and,
therefore, were considered as the control sites for
this study. Both sites were located between 2 and 3
km offshore the coast and are mainly dominated by
rocky-sandy bottoms. On the contrary, T was directly
onshore with bottoms that were mainly rocky to
sandy. This site was located near two submarine
sewage outlets that directly discharged wastewater
into the sea (IDECanarias visor 4.5.1, s. f.). On each
sampling site, a team of scuba divers randomly col-
lected between 23 and 28 Holothuria sanctori.
Overall, 79 sea cucumbers were collected. Each sea
cucumber was introduced in a Ziploc bag and, once
out of the water, immersed in a plastic container
with seawater until reaching the laboratory.

Animal dissection and intestinal sampling

Each holothurian was placed on a plastic tray, where its
total length was measured (to the nearest cm) with a
ruler. Sea cucumbers were opened with rounded-tip
scissors, or a scalpel, exerting some force longitudinally
through the ventral area (Díaz-Sol Sol et al. 2019). The
intestine was collected with tweezers and placed on a
tray covered with a sanitized bag. Then, each intestine
was washed off with a syringe filled with sterile saline
solution.

With a punch, a small hole was opened in the
luminal epithelium of the anterior intestine (Pagán-
Jiménez et al. 2019) and a small faecal sample was
collected using a sterile swab. Samples were then
sent to the microbiology laboratory, always before
24 h after sampling. The rest of the intestine was
stored in bottles with alcohol for later analysis of
microplastics.

Microbiological procedures

Samples were cultured on McConkey agar (MC),
McConkey Agar + cefotaxime 2 mg/L (MC + CTX), and
Mannitol Salt Agar (MSA), and then incubated (24–48
h) at 37°C. Selenite Broth was used as an enrichment
medium for Salmonella and, after 24 h at 37°C, a loop
of this medium was streaked onto Salmonella–Shigella
Agar (SS). All media were obtained from BD Difco,
Detroit, MI, USA.

An oxidase test was carried out on bacteria growing
on MC and/or MC + CTX. If the oxidase test was
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positive, a Kligler iron agar medium (Difco) was used to
screen fermentation of glucose and lactose. Bacteria
that yielded an oxidase test as positive, and did not

ferment glucose and lactose, were identified as Non-
Fermenter Bacilli (NFB). Oxidase negative bacteria
growing on MC and/or MC + CTX, and bacteria

Figure 1. Percentages of resistance and susceptibility to antibiotics in Enterobacteriaceae and NFB for each sampling site. (a)
Resistant bacteria at Baja de Pasito Blanco. (b) Susceptible bacteria at Baja de Pasito Blanco. Enterobacteriaceae and NFB have
the same susceptibility percentage (100%) for IPM, CIP and GM. (c) Resistant bacteria at Baja de Arguineguín. (d) Susceptible bac-
teria at Baja de Arguineguín. Enterobacteriaceae and NFB have the same susceptibility percentage (100%) for CAZ, IPM and GM. (e)
Resistant bacteria at Taliarte. (f) Susceptible bacteria at Taliarte. Enterobacteriaceae and NFB have the same susceptibility percen-
tage (100%) for IPM and GM.
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suspected to be Salmonella from SS Agar, were ident-
ified using an API 20E system (bioMérieux, Marcy
L’Etoile, France).

Gram staining, catalase and coagulase tests were
implemented on bacteria suspected to be Staphylococ-
cus aureus growing on MSA.

Antimicrobial susceptibility of isolates was studied
on Müeller–Hinton Agar (Difco), using the disk
diffusion method (CLSI 2015). Antibiotics tested
were: ampicillin (AM 10 µg), amoxicillin/clavulanic
acid (AMC 20 µg + 10 µg), cefoxitin (FOX 30 µg), cefo-
taxime (CTX 30 µg), ceftazidime (CAZ 30 µg),
ciprofloxacin (CIP 5 µg), enrofloxacin (ENO 5 µg), gen-
tamicin (GM 30 µg), imipenem (IPM 10 µg) and tetra-
cycline (TE 30 µg).

Presence of microplastics

Sea cucumbers’ intestines, initially stored in bottles
with alcohol, were passed onto a plastic tray and
opened through the anterior to the end (posterior
part) of the cloacae with a pair of scissors. A plastic
pipette with water was used to spread the faecal
content on the plastic tray. The faecal content was
observed with the help of a magnifying glass to tear
apart microplastics (1–5 mm) fragments; this is the
size fraction that dominates in coastal habitats of the
study region (Herrera et al. 2018). Similar proportions
of synthetic fibres, resin pellets and fragments from
larger plastics were observed, including a wide range
of colours and shapes. The number of fragments per
sea cucumber was then annotated. All microplastic
fragments were removed with tweezers, allocated on
a piece of aluminium foil, and weighed. Generalized
Linear Models (GLMs), using a ‘Poisson’ distribution
with a ‘log’ link function, then tested for differences
in the number and weight of microplastics between
the three sites. The total length of each sea cucumber
was included as a covariate. Models were
implemented using the R ‘Flexplot’ library (Fife, 2019)
in R studio (RStudio Team, 2020).

Results

Microbiological results

None of the bacteria colonies growing on MSA was
identified as Staphylococcus aureus. When Gram stain-
ing was carried out, all bacteria were Gram positive
bacilli. Colonies suspected to be Salmonella were not
observed on SS Agar. A total of 89 Gram negative iso-
lates were recovered from MC and 44 from MC + CTX.
Of these 133 Gram negative bacteria, 20 were

identified as Enterobacteriaceae (6 Citrobacter freundii,
1 Enterobacter cloacae, 6 Leclercia adecarboxylata and
7 Escherichia coli). One oxidase positive isolate was
identified as Vibrio alginolyticus. The remaining isolates
were considered NFB.

Antimicrobial susceptibility tests were carried out on
all Enterobacteriaceae, one Vibrio alginolyticus and 77
NFB isolates (Table I). For Citrobacter freundii, the
highest percentages of resistance were found to amox-
icillin + clavulanic acid, enrofloxacin, cefoxitin, ciproflox-
acin and ampicillin (>50%). All of them were, however,
susceptible to tetracycline, imipenem and gentamicin
(100%). Enterobacter cloacae showed resistance to ampi-
cillin but were susceptible to the rest of the antimicro-
bials tested. For Leclercia adecarboxylata, 83% of
isolates showed intermediate resistance to enrofloxacin.
High percentages of susceptibility to imipenem, ceftazi-
dime and gentamicin (100%) and amoxicillin + clavula-
nic acid, tetracycline, cefoxitin and ciprofloxacin
(>60%) were detected.

For E. coli, the highest percentages of resistance
were found to ampicillin (100%) and tetracycline
(72%). All the isolates were susceptible to ceftazidime,
enrofloxacin, imipenem, ciprofloxacin, and gentamicin.
High percentages of susceptibilities to cefoxitin and
cefotaxime (86%) were also observed.

Among NFB, the higher percentages of resistance
were found to cefoxitin (74%) and ampicillin (68%).
All of them were susceptible to imipenem and genta-
micin (100%). High percentages of susceptibility to cef-
tazidime, tetracycline and ciprofloxacin (>85%) were
also found.

The strain of Vibrio alginolyticus isolated was resist-
ant to ampicillin and susceptible to all the rest of the
antibiotics tested.

Percentages of AMR isolates for the three sampling
sites are presented in Figure 1. In general, for Entero-
bacteriaceae, higher percentages of resistant isolates
were found at the polluted site (T) for most of the anti-
biotics tested. However, the pattern of antimicrobial
resistance seems to not differ between the polluted
and the control sites for NFB.

Presence of microplastics

Large differences (□ 2 orders of magnitude) in the
amount of microplastics between sites were observed.
Sea cucumbers from the control sites (P and A) con-
tained a very low amount of microplastics in their intes-
tines, i.e. only three individuals. However, a high number
of plastic particles was observed in the intestinal content
of individuals from the polluted site (T, i.e. all individuals
contained microplastics) (Figures 2 and 3), which
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resulted in statistically significant differences (Tables II
and III).

Discussion

Nowadays, antimicrobial resistance and microplastics
are two subjects of major interest and concern. The

presence of AMR bacteria and microplastics in
marine environments are a risk for human, animal
and environmental health (De-la-Torre 2020; Alprol
et al. 2021; Ugwu et al. 2021). In turn, antibiotic-resist-
ant bacteria and microplastics can act as indicators of
pollution in aquatic environments (Al-Bahry et al.
2009; Pico et al. 2019). In addition to this, biofilms colo-
nizing microplastics’ surface can become a reservoir for

Table I: Percentages of susceptible isolates to different antimicrobials tested.
Antibiotic Species Resistant Intermediate Susceptible

Citrobacter freundii 50 − 50
Enterobacter cloacae − − 100
Leclercia adecarboxylata − − 100

Ceftazidime (CAZ) E. coli − − 100
Vibrio − − 100
Non-fermenting bacilli (NFB) 10 5 85
Citrobacter freundii 67 − 33
Enterobacter cloacae 100 − −

Amoxicillin/Clavulanic acid (AMC) Leclercia adecarboxylata 17 16 67
E. coli 43 57 −
Vibrio − − 100
Non-fermenting bacilli (NFB) 49 15 36
Citrobacter freundii 66.67 16.67 16.67
Enterobacter cloacae − 100 −

Enrofloxacin (ENO) Leclercia adecarboxylata 17 83 −
E. coli − − 100
Vibrio − − 100
Non-fermenting bacilli (NFB) 6 25 69
Citrobacter freundii − − 100
Enterobacter cloacae − 100 −
Leclercia adecarboxylata − 17 83

Tetracycline (TE) E. coli 72 14 14
Vibrio − − 100
Non-fermenting bacilli (NFB) 4 6 90
Citrobacter freundii 67 − 33
Enterobacter cloacae − − 100
Leclercia adecarboxylata − 33 67

Cefoxitin (FOX) E. coli 14 − 86
Vibrio − − 100
Non-fermenting bacilli (NFB) 74 12 14
Citrobacter freundii − − 100
Enterobacter cloacae − − 100
Leclercia adecarboxylata − − 100

Imipenem (IPM) E. coli − − 100
Vibrio − − 100
Non-fermenting bacilli (NFB) − − 100

Figure 2. Number of microplastic particles in the intestinal
contents of the specimens collected at each site, according
to their size (total length).

Figure 3. Weight (micrograms) of microplastics found in the
intestinal content of the specimens collected at each site,
according to their size (total length).
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pathogens or faecal contamination indicator microor-
ganisms, spreading through the aquatic environment
(Arias-Andres et al. 2019; De-la-Torre 2020; Yang
et al. 2020). In this study, we have determined the pres-
ence of AMR bacteria and microplastics in the intestine
of the sea cucumber Holothuria sanctori collected at
three sampling sites, under different pollution levels,
in Gran Canaria (Spain).

In addition to the identification of microplastics in
farmed holothurians (Mohsen et al. 2019), the presence
of microplastics in the guts of wild holothurians has
been described previously (Graham and Thompson
2009; Renzi et al. 2018). Initially, our study observed a
clear and positive effect of individual size on the
amount of microplastics in the intestines of holothurians.
This contrast with results observed for the holothurian
Apostichopus japonicus in China (Mohsen et al. 2019). A
larger individual size implies a wider mouth and, there-
fore, larger sediment ingestion rates (Navarro et al.
2013). The number and total weight of microplastic par-
ticles observed in our study were significantly higher
(several orders of magnitude) in the guts of animals
sampled at the polluted site, reflecting, therefore, the
large amount (availability) of microplastics in a nearshore
site under high organic pollution. It is particularly note-
worthy that, despite animals at the impacted site being
mostly small-sized, relative to controls, they consumed
large amounts of microplastics. Despite the presence of
microplastics being widespread in the coastal regions
of the Canary Islands (Herrera et al. 2018; Reinold et al.
2020), this result may concurrently reflect a deficient
depuration process of sewage waters released to the
ocean. Without a doubt, this outcome points towards

an urgent necessity to improve depuration of wastewater
released by coastal outlets. These microplastic particles
can act as carriers of pollutants (Camacho et al. 2019)
and, by bioaccumulation, are moving through the food
web (Alprol et al. 2021). Sea cucumbers are part of the
human diet, especially in Asia, and, as a result, the pres-
ence of microplastics in these animals could represent
a risk for human health (De-la-Torre 2020).

The sea cucumber Holothuria sanctori is a species of
interest for aquaculture. The presence of AMR bacteria
could complicate treatments of infectious diseases and
it could also represent a risk for consumers of sea
cucumbers. Some authors (Yang et al. 2019; Dong
et al. 2021) emphasized the environmental effects
and risks derived from interactions between microplas-
tics and antimicrobials, calling for a reduction of both
pollutants, especially in aquaculture environments.

Large percentages (>50%) of resistant isolates to
several antimicrobials (AM, AMC, CAZ, FOX, CIP, ENO)
were found for Enterobacteriaceae from holothurians
sampled at the polluted site (T). Enterobacteriaceae,
and more specifically coliforms, are often used as indi-
cators of faecal pollution of water (Al-Bahry et al. 2009).
Detection of Enterobacteriaceae resistance to antimi-
crobials, considered of ‘critical importance’ by the
World Health Organization (WHO 2019), in holothur-
ians reinforces the need for better control of pollution
of aquatic environments, particularly to avoid possible
risks for human and animal health derived from
sewage discharges (Al-Bahry et al. 2009).

Significantly higher quantities of microplastic par-
ticles were also found in the intestine of animals
sampled at the polluted site (T), relative to control
sites. The role of microplastics as a reservoir of antimicro-
bial resistance genes (ARGs) in the marine environment
has been studied (Yang et al. 2019) and a significantly
greater presence and diversity of ARGs in plastics micro-
biota than in surrounding seawater microbiota was
found. Of particular concern is that multidrug resistance
genes were the main class of ARGs detected in micro-
plastics. In conclusion, by combining two sources of
data in the gut contents of a holothurian species, this
study has pointed towards clear effects of pollution on
a nearshore site directly affected by a sewage outlet.
This preliminary result stresses that it is important to
integrate microbiological and ecological approaches to
analyse the combined influence of microplastics and
microbiological pollution in aquatic ecosystems.
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